Ka-Band Low Noise Amplifiers LK-20S000 Series ## Introduction LK-20S000 series Ka-Band Ultra Low Noise Amplifiers are specially designed for satellite earth station and other telecommunications applications. Utilizing state-of-the-art HEMT and GaAs FET technology, these amplifiers have been designed for both fixed and transportable applications. High performance models are available with noise temperatures from 130 K to 110 K. All noise temperature specifications are guaranteed over the full bandwidth of the LNA. # **Features** - Wideband coverage - Noise temperatures to 110 K - High reliability HEMT design - Input/output isolators - Reverse polarity protection - Wide operating temperature range, -40 ℃ to +70 ℃ - Form 'A' alarm # **Options** - Low gain, 50 dB typical - High Output power, P_{1 dB} = +20 dBm minimum - Excellent guaranteed gain stability due to built-in temperature compensation circuit (test data provided) - Universal input AC power supply | Parameter | Notes | Min. | Nom./Typ. [†] | Max. | Units | |---|--|---|------------------------|-------------------------|---| | Frequency | Band "A"
Band "B" | 18.2
20.2 | | 20.2
21.2 | GHz
GHz | | Gain | Standard
Option 1 | 57
47 | 60
50 | 63
53 | dB
dB | | Gain Flatness | Full band
Per 40 MHz | | | ±1.0
±0.2 | dB
dB | | VSWR | Input
Output | | 1.25
1.40 | 1.30
1.50 | :1
:1 | | Noise Temperature ^A | At +23 ℃
Versus temperature | | See Table 2 | ee Table 1 | | | Power Output at 1 dB compression (P _{1 dB}) | Standard
Option 2 | +12
+20 | +14
+22 | | dBm
dBm | | 3rd Order Output Intercept
Point, OIP ₃ | Standard
Option 2 | +22
+28 | +24
+30 | | dBm
dBm | | Group Delay
per 40 MHz | Linear
Parabolic
Ripple | | | 0.01
0.001
0.1 | ns/MHz
ns/MHz ²
ns p-p | | AM/PM Conversion | -5 dBm Output | | | 0.05 | %dB | | Gain Stability
(Constant Temp.) | Short term (10 min)
Medium term (24 hrs)
Long term (1 week) | | ±0.1
±0.2
±0.5 | | dB
dB
dB | | Gain Stability | Versus temperature (Standard)
Improved stability (Option 3)
over operational temp range | | -0.06 | 2.0 | dB per ℃
dB pk-pk | | Maximum Input Power | Damage threshold
Desens. threshold,
29.0–31.0 GHz | | | 0
-25 | dBm
dBm | | Connectors | Input
Output
Power | WR42 Cover Flange (#4-40 THD holes)
SMA Female
PT02E-8-4P-027 (mate supplied) | | | | | Power Requirements | Voltage (Standard) Current, @ P _{1 dB} (Standard) Current, @ P _{1 dB} (Option 1) Current, @ P _{1 dB} (Option 2) | 11 | 15 | 24
600
400
600 | Vdc
mA
mA
mA | | | Voltage (Option 4) B | 90 | | 265 | Vac | | Operating Temperature | T _{AMB} (Standard)
T _{AMB} (Option 4) ^B | -40
-40 | | +70
+60 | $\overset{\circ}{\sim}$ | [†] When there is only one value on a line, the Nom./Typ. column is a nominal value; otherwise it is a typical value. Typical values are intended to illustrate typical performance, but are not guaranteed. $^{^{\}rm A}$ Maximum noise temperature at +23 $^{\rm C}$ at any frequency in the specified band. ^B Consult factory for AC power option. ## Table 2 - Noise Temperature vs. Ambient Temperature Noise temperature vs. ambient temperature can be found from the equation, $NT_2/NT_1 = (T_2/T_1)^{1.8}$ where: NT_2 = Noise Temperature at T_2 NT_1 = Noise Temperature at T_1 T_2 = Temperature 2 in K T_1 = Temperature 1 in K $(K = {}^{\circ}C + 273)$ For the case where T_1 = 296 K (+23 °C), the ratio NT_2 / NT_1 is shown in the table below: | Ambient Temperature | Ratio | | | |---------------------|-------------|--|--| | T ₂ (°C) | NT_2/NT_1 | | | | 0 | 0.86 | | | | +23 | 1.00 | | | | +40 | 1.11 | | | | +50 | 1.17 | | | | +60 | 1.24 | | | Example: For model LKB20S110-XXXXX, NT₁ = 110 K at +23 °C; what is NT₂ at +50 °C? From the table, NT₂ /NT₁ at 50 °C = 1.17: NT₂ = 1.17 x (110 K) = 128.7 K at 50 °C # **Typical Applications** ### 1:2 System # **Outline Drawing** ## **Other Products** - Solid-State Power Amplifiers and SSPA Systems - Solid-State Power BUCs and SSPB Systems - Low Noise Amplifiers and LNA Systems - Low Noise Block Converters and LNB Systems - Block Up and Block Down Converters - Synthesized Converters - Line Drive Amplifiers - Power Supply Monitors - · Redundant Control Panels for SSPAs, SSPBs, and LNAs # **GENERAL DYNAMICS** SATCOM Technologies