Ka-Band Low Noise Amplifiers LK-20S000 Series

Introduction

LK-20S000 series Ka-Band Ultra Low Noise Amplifiers are specially designed for satellite earth station and other telecommunications applications. Utilizing state-of-the-art HEMT and GaAs FET technology, these amplifiers have been designed for both fixed and transportable applications. High performance models are available with noise temperatures from 130 K to 110 K. All noise temperature specifications are guaranteed over the full bandwidth of the LNA.

Features

- Wideband coverage
- Noise temperatures to 110 K
- High reliability HEMT design
- Input/output isolators
- Reverse polarity protection
- Wide operating temperature range, -40 ℃ to +70 ℃
- Form 'A' alarm

Options

- Low gain, 50 dB typical
- High Output power, P_{1 dB} = +20 dBm minimum
- Excellent guaranteed gain stability due to built-in temperature compensation circuit (test data provided)
- Universal input AC power supply

Parameter	Notes	Min.	Nom./Typ. [†]	Max.	Units
Frequency	Band "A" Band "B"	18.2 20.2		20.2 21.2	GHz GHz
Gain	Standard Option 1	57 47	60 50	63 53	dB dB
Gain Flatness	Full band Per 40 MHz			±1.0 ±0.2	dB dB
VSWR	Input Output		1.25 1.40	1.30 1.50	:1 :1
Noise Temperature ^A	At +23 ℃ Versus temperature		See Table 2	ee Table 1	
Power Output at 1 dB compression (P _{1 dB})	Standard Option 2	+12 +20	+14 +22		dBm dBm
3rd Order Output Intercept Point, OIP ₃	Standard Option 2	+22 +28	+24 +30		dBm dBm
Group Delay per 40 MHz	Linear Parabolic Ripple			0.01 0.001 0.1	ns/MHz ns/MHz ² ns p-p
AM/PM Conversion	-5 dBm Output			0.05	%dB
Gain Stability (Constant Temp.)	Short term (10 min) Medium term (24 hrs) Long term (1 week)		±0.1 ±0.2 ±0.5		dB dB dB
Gain Stability	Versus temperature (Standard) Improved stability (Option 3) over operational temp range		-0.06	2.0	dB per ℃ dB pk-pk
Maximum Input Power	Damage threshold Desens. threshold, 29.0–31.0 GHz			0 -25	dBm dBm
Connectors	Input Output Power	WR42 Cover Flange (#4-40 THD holes) SMA Female PT02E-8-4P-027 (mate supplied)			
Power Requirements	Voltage (Standard) Current, @ P _{1 dB} (Standard) Current, @ P _{1 dB} (Option 1) Current, @ P _{1 dB} (Option 2)	11	15	24 600 400 600	Vdc mA mA mA
	Voltage (Option 4) B	90		265	Vac
Operating Temperature	T _{AMB} (Standard) T _{AMB} (Option 4) ^B	-40 -40		+70 +60	$\overset{\circ}{\sim}$

[†] When there is only one value on a line, the Nom./Typ. column is a nominal value; otherwise it is a typical value. Typical values are intended to illustrate typical performance, but are not guaranteed.

 $^{^{\}rm A}$ Maximum noise temperature at +23 $^{\rm C}$ at any frequency in the specified band.

^B Consult factory for AC power option.

Table 2 - Noise Temperature vs. Ambient Temperature

Noise temperature vs. ambient temperature can be found from the equation,

 $NT_2/NT_1 = (T_2/T_1)^{1.8}$

where:

 NT_2 = Noise Temperature at T_2 NT_1 = Noise Temperature at T_1 T_2 = Temperature 2 in K T_1 = Temperature 1 in K $(K = {}^{\circ}C + 273)$

For the case where T_1 = 296 K (+23 °C), the ratio NT_2 / NT_1 is shown in the table below:

Ambient Temperature	Ratio		
T ₂ (°C)	NT_2/NT_1		
0	0.86		
+23	1.00		
+40	1.11		
+50	1.17		
+60	1.24		

Example: For model LKB20S110-XXXXX, NT₁ = 110 K at +23 °C; what is NT₂ at +50 °C? From the table, NT₂ /NT₁ at 50 °C = 1.17: NT₂ = 1.17 x (110 K) = 128.7 K at 50 °C

Typical Applications

1:2 System

Outline Drawing

Other Products

- Solid-State Power Amplifiers and SSPA Systems
- Solid-State Power BUCs and SSPB Systems
- Low Noise Amplifiers and LNA Systems
- Low Noise Block Converters and LNB Systems
- Block Up and Block Down Converters
- Synthesized Converters
- Line Drive Amplifiers
- Power Supply Monitors
- · Redundant Control Panels for SSPAs, SSPBs, and LNAs

GENERAL DYNAMICS

SATCOM Technologies